Внеклеточный матрикс. Строение внеклеточного матрикса (ВКМ) и межклеточных контактов

Внеклеточный матрикс составляет основу соединительной ткани , обеспечивает механическую поддержку клеток и транспорт химических веществ. Кроме того, клетки соединительной ткани образуют с веществами матрикса межклеточные контакты (гемидесмосомы, адгезивные контакты и др.), которые могут выполнять сигнальные функции и участвовать в локомоции клеток. Так, в ходе эмбриогенеза многие клетки животных мигрируют, перемещаясь по внеклеточному матриксу, а отдельные его компоненты играют роль меток, определяющих путь миграции.

Основные компоненты внеклеточного матрикса - гликопротеины , протеогликаны и гиалуроновая кислота . Коллаген является превалирующим гликопротеином внеклеточного матрикса у большинства животных. В состав внеклеточного матрикса входит множество других компонентов: белки фибрин , эластин , а также фибронектины , ламинины и нидогены ; в состав внеклеточного матрикса костной ткани входят минералы, такие как гидроксиапатит; можно считать внеклеточным матриксом и компоненты жидких соединительных тканей - плазму крови и лимфатическую жидкость.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Внеклеточный матрикс" в других словарях:

    Матрикс - все активные акции Матрикс в категории Парикмахерские принадлежности и косметика для волос

    Термин матрикс, внеклеточный Термин на английском matrix extracellular Синонимы Аббревиатуры Связанные термины биологические нанообъекты, биосовместимые покрытия, клетка, протеом, протеомика Определение В биологии внеклеточные структуры ткани.… … Энциклопедический словарь нанотехнологий

    Внеклеточным матриксом (англ. extracellular matrix, ECM) в биологии называют неклеточные структуры ткани. Внеклеточный матрикс составляет основу соединительной ткани, и образуется её клетками. Обеспечивает механическую поддержку тканей. Основные… … Википедия

    Это ткань живого организма, не отвечающая непосредственно за работу какого либо органа или системы органов, но играющая вспомогательную роль во всех органах, составляя 60 90 % от их массы. Выполняет опорную, защитную и трофическую функции.… … Википедия

    Биоплёнка множество (конгломерат) микроорганизмов, расположенных на какой либо поверхности, клетки которых прикреплены друг к другу. Обычно клетки погружены в выделяемое ими внеклеточное полимерное вещество (внеклеточный матрикс) … … Википедия

    Соединительная ткань это ткань живого организма, не относящаяся к собственным функциям каких либо органов, но присутствующая на вспомогательных ролях во всех них, составляя 60 90 % их массы. Выполняет опорную, защитную и трофическую функции.… … Википедия

Называют неклеточные структуры ткани. Внеклеточный матрикс составляет основу соединительной ткани , и образуется её клетками. Обеспечивает механическую поддержку тканей.

Основные компоненты внеклеточного матрикса - гликопротеины , протеогликаны и гиалуроновая кислота . Коллаген является превалирующим гликопротеином внеклеточного матрикса у большинства животных. В состав внеклеточного матрикса входит множество других компонентов: белки фибрин , эластин , а также фибронектины , ламинины, и нидогены ; минералы, такие как гидроксилапатит; жидкости - плазма крови и сыворотка, содержащие свободные антигены .


Wikimedia Foundation . 2010 .

Смотреть что такое "Межклеточный матрикс" в других словарях:

    Матрикс - все активные акции Матрикс в категории Парикмахерские принадлежности и косметика для волос

    Термин матрикс, внеклеточный Термин на английском matrix extracellular Синонимы Аббревиатуры Связанные термины биологические нанообъекты, биосовместимые покрытия, клетка, протеом, протеомика Определение В биологии внеклеточные структуры ткани.… … Энциклопедический словарь нанотехнологий

    Это ткань живого организма, не отвечающая непосредственно за работу какого либо органа или системы органов, но играющая вспомогательную роль во всех органах, составляя 60 90 % от их массы. Выполняет опорную, защитную и трофическую функции.… … Википедия

    Соединительная ткань это ткань живого организма, не относящаяся к собственным функциям каких либо органов, но присутствующая на вспомогательных ролях во всех них, составляя 60 90 % их массы. Выполняет опорную, защитную и трофическую функции.… … Википедия

    Это статья о неакадемическом направлении исследований. Пожалуйста, отредактируйте статью так, чтобы это было ясно как из её первых предложений, так и из последующего текста. Подробности в статье и на странице обсуждения … Википедия

    - (кератоз) это патологическое состояние кожи невоспалительного характера, характеризующееся значительным утолщением рогового слоя или задержкой его нормального отторжения. Может быть наследственным, приобретенным и симптоматическим. Даже у… … Википедия

    Схематическая структура плазмодесмы. 1 клеточная стенка 2 плазмолемма 3 десмотубула 4 эндоплазматический ретикулум 5 белки плазмодесмы Плазмодесмы (от греч … Википедия

Межклеточный матрикс - это надмолекулярный комплекс, образованный сложной сетью связанных между собой макромолекул.

В организме межклеточный матрикс формирует такие высокоспециализированные структуры, как хрящ, сухожилия, базальные мембраны, а также (при вторичном отложении фосфата кальция) кости и зубы. Эти структуры различаются между собой как по молекулярному составу, так и по способам организации основных компонентов (белков и полисахаридов) в различных формах межклеточного матрикса.

Химический состав межклеточного матрикса

В состав межклеточного матрикса входят: 1). Коллагеновые иэластиновые волокна . Они придают ткани механическую прочность, препятствуя ее растяжению; 2).аморфное вещество в виде ГАГ и протеогликанов. Оно удерживает воду и минеральные вещества, препятствует сдавливанию ткани; 3).неколлагеновые структурные белки - фибронектин, ламинин, тенасцин, остеонектин и др. Кроме того, в межклеточном матриксе может присутствоватьминеральный компонент - в костях и зубах: гидроксиапатит, фосфаты кальция, магния и т.д. Он придает механическую прочность костям, зубам, создает запас в организме кальция, магния, натрия, фосфора.

Функция межклеточного матрикса

Межклеточный матрикс выполняет в организме разнообразные функции:

    образует каркас органов и тканей;

    является универсальным «биологическим» клеем;

    участвует в регуляции водно-солевого обмена;

    образует высокоспециализированные структуры (кости, зубы, хрящи, сухожилия, базальные мембраны).

    окружая клетки, влияет на их прикрепление, развитие, пролиферацию, организацию и метаболизм.

1. Коллаген

Коллаген - фибриллярный белок, основной структурный компонент межклеточного матрикса. Коллаген обладает огромной прочностью (Коллаген прочнее стальной проволоки того же сечения, он может выдерживать нагрузку в 10000 раз большую собственного веса) и практически не растяжим. Это самый распространенный белок организма, на него приходиться от 25 до 33% общего количества белка в организме, т.е. 6% массы тела. Около 50% всех коллагеновых белков содержится в тканях скелета, около 40% - в коже и 10% - в строме внутренних органов.

Строение коллагена

Под коллагеном понимают два вещества: тропоколлаген и проколлаген.

Молекула тропоколлагена состоит из 3 α-цепей. Известно около 30 видов α-цепей, отличающихся между собой аминокислотным составом. Большинство α-цепей содержит около 1000АК. В тропоколлагене содержится 33% глицина, 25% пролина и 4-оксипролина, 11% аланина, есть гидроксилизин, мало гистидина, метионина и тирозина, нет цистеина и триптофана.

    Первичная структура α-цепей состоит из повторяющейся аминокислотной последовательности: Глицин- X - Y . ВX положении чаще всего находиться пролин, а вY – 4-оксипролин или 5-оксилизин.

    Пространственная структура α-цепи представлена левозакрученной спиралью в витке которой находиться 3 АК.

    3 α-цепи скручиваются друг с другом в правозакрученную суперспираль тропоколлагена . Она стабилизируется водородными связями, радикалы АК направлены наружу.

Молекула проколлагена устроена также как и тропоколлагена, но на ее концах находятсяС- и N -пропептиды, образующие глобулы. N-концевой пропептид состоит из 100АК, С-концевой пропептид – из 250АК. С- иN-Протеопептиды содержат цистеин, который через дисульфидные мостики образует глобулярную структуру.

Остеокласты

Остеоциты

Остеобласты

КЛЕТКИ КОСТНОЙ ТКАНИ

ФункциИ костной ткани

ЛЕКЦИЯ №

Тема: Биохимия костной ткани

Факультеты: стоматологический.

Костная ткань является разновидностью соединительной ткани с высокой минерализацией межклеточного вещества.

1. Формообразующая

2. Опорная (фиксация мышц, внутренних органов)

3. Защитная (грудная клетка, череп и т.д.)

4. Запасающая (депо минеральных веществ: кальция, магния, фосфора, натрия и т.д.).

5. Регуляция КОС (при ацидозе отдает Na + , Ca 3 (PO 4) 2)

В организме человека выделяют 2 типа костной ткани: ретикулофиброзная (губчатое костное вещество) и пластинчатая (компактное костное вещество). Из них образованы различные виды костей: трубча­тые, губчатые и т. п.

Как и любая ткань, костная ткань состоит из клеток и межклеточного матрикса.

В костной тканивыделяются 2 типа клеток мезенхимального происхождения.

1 тип:

а) стволовые остеогенные клетки;

б) полустволовые стромальные клетки;

в) остеобласты (из них образуются остеоциты);

г) остеоциты;

2 тип:

а) стволовые кроветворные клетки;

б) полустволовые кроветворные клетки (из них образуются миелоидные клетки, макрофаги);

в) унипотентная колонеообразующая моноцитарная клетка (из нее образуется монобласт → промоноцит → моноцит → остеокласт);

Молодые, не делящиеся клетки, создающие костную ткань. Имеют различную форму: кубическую, пирамидальную, угловатую. Содержат 1 ядро. В цитоплазме хорошо развиты широховатая ЭПС, митохондрии и комплекс Гольджи. В клетке много РНК, высокая активность щелочной фосфатазы, активен биосинтез белка (коллагена, протеогликаны, ферменты).

Встречаются только в глубоких слоях надкостницы и в местах регенерации костной ткани. Покрывают всю поверхность развивающейся костной балки.

Преобладающие клетки костной ткани, образуются из остеобластов. Не способны к делению, имеют отросчатую форму, крупное ядро в центре клетки, содержат мало органелл, не имеют центриолей. Располагаются в лакунах, вырабатывают компоненты межклеточного вещества.

Гигантские многоядерные клетки гематогенной природы. В клетке выделяют 2 зоны. В клетке много вакуолей, митохондрий, лизосом. Немного рибосом, слабо развит шероховатый ЭПС.

Активность остеокластов регулируются Т-лимфоцитами через цитокины. Остеокласты способны разрушать обызвествленный хрящ или кость. Они выделяют в межклеточную жидкость СО 2 и карбоангидразу. Н 2 О + СО 2 = Н 2 СО 3 Накопление кислот приводит разрушение кальциевых солей и органической матрицы.


В состав межклеточного матрикса костной ткани входят органические и неорганические вещества. В компактной кости неорганический компонент составляет 70% массы кости, органический компонент - 20% массы кости, вода – 10% массы кости. При этом по объе­му на неорганический компонент приходится только около ¼ кости; остальную часть занимает органический компонент и вода.

В губчатой костной ткани неорганический компонент составляет 33-40% массы кости, органический компонент - 50% массы кости, вода – 10% массы кости.

Органический компоненткостной ткани состоит в основном (90-95%) из коллагеновых волокон (коллаген 1 типа), которые содержат много оксипролина, лизина, фосфата, связанного с серином, и мало гидроксилизина.

Органический компонент костной ткани содержит незначительное количество протеогликанов и ГАГ. Основным представителем является хондроитин-4-сульфат, немного хондроитин-6-сульфата, кератансульфата, гиалуроновой кислоты.

В костной ткани находятся неколлагеновые структурные белки остеокальцин, остеонектин, остеоронтин и др. Остеонектин является посредником кальцификации, он связывает кальций и фосфор с коллагеном. Пептид (49АК), содержащий 3 остатка γ-карбоксиглутаминовой кисло­ты. В синтезе этого пептида участвует витамин К, он обеспечивает карбоксилирование глутаминовой кислоты.

В косной ткани содержатся ферменты: щелочная фосфатаза (много в растущих костях), кислая фосфатаза (мало), коллагеназа, пирофосфатаза. Фосфотазы выделяют фосфат из органических соединений. Пирофосфатаза разрушает пирофосфат, который является ингибитором кальцификации.

Также органический компонент представлен различными органическими кислотами фумаровой, яблочной, молочной и т.д. Присутствуют липиды.

Минеральный компонент костной ткани взрослого человека состоит глав­ным образом из гидроксиапатита (приблизительный состав Са 10 (РО 4) 6 (ОН) 2), кроме того, он включает фосфаты кальция (Са 3 (РО 4) 2), магния (Mg 3 (РО 4) 2), карбонаты, фториды, гидроксиды, цитраты (1%) и т.д. В состав костей входит большая часть Mg 2+ , около четверти Na + и небольшая часть К + , содержа­щихся в организме. У детей раннего возраста в минеральном компоненте костной ткани преобладает аморфный фосфат кальция (Са 3 (РО 4) 2), он является лабильным резервом кальция и фосфора.

Кри­сталлы гидроксиапатита имеют форму пластинок или палочек толщиной около 8-15Å, шириной 20-40Å, длиной 200-400Å. В кристаллической решетке гидроксиапатита Са 2+ может замещаться другими двухвалентными катионами. В растущую кристал­лическую решетку гидроксиапатита могут внедряться ионы тяжелых металлов: свинец, радий, уран и тяжелые элементы, образующиеся при рас­паде урана, например стронций.

Анионы, отличные от фосфата и гидроксила, либо адсорбируются на большой поверхности, образуемой малень­кими кристаллами либо растворяются в гидратной оболочке кри­сталлической решетки. Ионы Na + адсорбируются на поверхности кристаллов.

Между собой кри­сталлы гидроксиапатита связываются через Са 2+ с помощью остатков γ-карбоксиглутаминовой кисло­ты пептида (49 АК).

Вследствие кристаллической структуры образованной органическими и неорганическими компонентами модуль упругости кости сходен с бетоном.

10.07.2017 Аврора

В материалах на нашем сайте мы часто упоминаем понятие «внеклеточный матрикс», но до сих пор не говорили подробно о его составе и структуре. В этой статье мы полностью расшифруем этот термин и покажем, какие вещества содержатся в матриксе, для чего они нужны, а главное — как сохранить здоровье межклеточной среды.

Итак, в организме человека клетки составляют примерно 20%, а остальные 80% — внеклеточный матрикс. Может возникнуть ощущение, что матрикс – это некая субстанция, в которой плавают клетки. На самом деле нигде ничего не плавает, все имеет строго упорядоченную структуру. Она может отличаться в различных тканях, но в большинстве случаев картина примерно одинакова.

Начнем со схематического изображения клеточной мембаны. Это двойной слой липидов, большинство из которых – фосфолипиды.

Интегрины, дистрогликаны и рецепторы домена дискоидина (DDR) – белки, пронизывающие мемрану клетки. Это клеточные рецепторы, взаимодействующие с внешней средой и передающие различные межклеточные сигналы.

А далее следует базальная мембрана, отделяющая клетку от соединительной ткани (матрикса). То есть клетки большинства тканей не контактируют с матриксом напрямую. Базальная мембрана формируется ламинином (светлая пластинка) и коллагеном 4 типа (темная пластинка). Связанные белком нидогеном (или энтактином), они образуют пространственную структуру и в первую очередь играют роль механической поддержки и защиты клеток. Фибронектин – гликопротеин, также отвечающий за структуру ткани, может формировать мультимерные цепочки. Участвует в адгезии, то есть сцеплении, клеток.

Также здесь находятся молекулы протеина перлекана. Он помогает поддерживать эндотелиальный барьер — физиологический барьер между кровеносной системой и центральной нервной системой. Он защищает нервную ткань от циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают нервную ткань как чужеродную. Протеогликан агрин играет ключевую роль в нейромышечном соединении, отвечая за доставку нервных импульсов к мышечным клеткам.

Двигаемся дальше, где начинается уже собственно межклеточный матрикс или соединительная ткань. Он пронизан волокнами коллагена. Это фибриллярный белок, составляющий основу соединительной ткани организма (сухожилия, кости, хрящи, дерма и т.д.) и обеспечивающий её прочность и эластичность.

Эластин формирует трехмерную сеть белковых волокон. Эта сеть не только важна для механической прочности ткани, но также обеспечивает контакты между клетками, формирует пути миграции клеток, вдоль которых они могут перемещаться (например, при эмбриональном развитии), изолирует разные клетки и ткани друг от друга (например, обеспечивает скольжение в суставах).

Аггрекан (протеогликановый хондроитинсульфат) – связывает воду, гиалуроновую кислоту и белки и формирует осмос, соответственно наделяя соединительную ткань, в том числе межпозвоночные диски и другие хрящи, устойчивостью к большим нагрузкам.

Гиалуроновая кислота участвует в регенерации ткани. Содержится во многих биологических жидкостях, в том числе синовиальной, отвечает за вязкость соединительной ткани. В связке с аггреканом формирует устойчивость к компрессии. Также гиалуроновая кислота - основной компонент биологической смазки и суставного хряща, в котором присутствует в виде оболочки каждой клетки (хондроцита).

Осталось упомянуть Коллаген 7 типа, который играет роль связующего структурного элемента. Например, в коже это якорные фибриллы в связке дермы (собственно кожи) и эпидермиса.

Безусловно, в состав матрикса также входит вода – от 25% в костной ткани до 90% в плазме крови.

Итак, что мы видим перед собой в итоге? – упорядоченную структуру, которая так или иначе встречается во всех тканях человека.

Например, на изображении слева — многослойный эпителий роговицы глаза. Состоит из плоских клеток верхнего слоя, среднего слоя, удлиненных клеток базального слоя, а затем идет базальная мембрана и соединительная ткань.
А справа эпителий трахеи – и здесь мы видим в целом то же самое. Только в верхнем слое находятся бокаловидные клетки. Далее следует базальная мембрана и матрикс.
А что за клетки мы наблюдаем в самой соединительной ткани? В большинстве тканей это фибробласты – клетки, вырабатывающие коллаген, эластин и протеогликаны. Также там могут находится жировые клетки, плазматические клетки, в хрящах – хондробласты и хондроциты и т.д. в зависимости от типа ткани.

Обратите внимание, что матрикс в обоих случаях имеет видимую структуру, хотя на снимках она не очень четкая. Упорядоченная структрура межклеточного матрикса — это признак молодости и здоровья. Но со временем воздействия внешних и внутренних факторов приводят к постепенному разрушению этой структуры – соответственно клетки перестают получать достаточное питание для их нормального роста и деления, ухудшается нервная проводимость, связь между клетками, их мобильность.